Flashdisk Video Edukasi Islami Berisi 500 Lebih Video Edukasi.. Flashdisk 16GB Sandisk ORIGINAL garansi 5 Tahun. Gratis 1 OTG Dengan potongan 12%! Hanya Rp74.800. Dapatkan sekarang juga di Shopee! klik link ini langsung ke Shopee  VIDEO EDUKASI ISLAMI atau klik wa 081296355567 untuk WA ke Admin langsung Paket Flashdisk Video Edukasi Anak Muslim 16GB + Bonus OTG



Flashdisk Video Edukasi Islami Berisi 500 Lebih Video Edukasi.. Flashdisk 16GB Sandisk ORIGINAL garansi 5 Tahun. Gratis 1 OTG Dengan potongan 12%! Hanya Rp74.800. Dapatkan sekarang juga di Shopee! klik link ini langsung ke Shopee  VIDEO EDUKASI ISLAMI atau klik wa 081296355567 untuk WA ke Admin langsung Paket Flashdisk Video Edukasi Anak Muslim 16GB + Bonus OTG



Pembahasan Soal Ujian Nasional Program Linear

Pembahasan Soal Ujian Nasional Program Linear - Sahabat Dunia pendidikan Indonesia, Pada Artikel pendidikan yang anda baca kali ini dengan judul Pembahasan Soal Ujian Nasional Program Linear, team telah mencoba mempersiapkan artikel ini dengan baik untuk anda baca dan ambil informasinya. mudah-mudahan isi artikel saya ini, Artikel PEMBAHASAN UN MATEMATIKA, Artikel UJIAN NASIONAL MATEMATIKA, Artikel UN PROGRAM LINEAR, yang sudah dipersiapkan dan kami tulis ini dapat bermanfaat. Selamat membaca, jangan lupa SHARE dan Bookmark agar mudah mencari artikel ini.

Judul : Pembahasan Soal Ujian Nasional Program Linear
link : Pembahasan Soal Ujian Nasional Program Linear

Baca Juga

Ujian Nasional Matematika - Program Linear. Pada pembahasan kali ini, akan dibahas beberapa soal ujian nasional bidang study matematika tentang program linear. Biasanya, ada dua soal tentang program linear yang keluar dalam ujian nasional. Dari beberapa soal yang pernah keluar dalam ujian nasional matematika, model soal program linear yang paling sering muncul adalah menentukan nilai optimum dari fungsi tujuan dalam bentuk soal cerita dan menentukan nilai maksimum fungsi tujuan berdasarkan himpunan penyelesaian yang ditunjukkan dalam grafik.

Kumpulan Soal Ujian Nasional Program Linear

  1. Seorang pembuat kue mempunyai 4 kg gula dan 9 kg tepung. Untuk membuat sebuah kue jenis A dibutuhkan 20 gram gula dan 60 gram tepung, sedangkan untuk membuat sebuah ue jenis B dibutuhkan 20 gram gula dan 40 gram tepung. Jika kue A dijual dengan harga Rp 4.000,00/buah dan kue B dijual 3.000,00/buah, maka pendapatan maksimum yang dapat diperoleh pembuat kue tersebut adalah ....
    1. Rp 600.000,00
    2. Rp 650.000,00
    3. Rp 700.000,00
    4. Rp 750.000,00
    5. Rp 800.000,00

    Pembahasan :
    Untuk menjawab soal di atas, langkah pertama yang dapat kita lakukan adalah menentukan fungsi tujuan dan menyusun sistem pertidaksamaan berdasarkan soal cerita tersebut.

    Dari soal diketahui persediaan bahan yaitu :
    ⇒ Gula = 4 kg = 4000 gram
    ⇒ Tepung = 9 kg = 9000 gram

    Untuk menyusun sistem pertidaksamaan linear, kita dapat memanfaatkan tabel sebagai berikut :

    Kue AKue BPersediaan
    Gula20204.000
    Tepung60409.000

    Sesuai dengan tabel di atas, jika kue jenis A kita misalkan sebagai x dan kue jenis y kita misalkan sebagai y, maka sistem pertidaksamaannya adalah :
    (1) 20x + 20y ≤ 4.000 → x + y ≤ 200
    (2) 60x + 40y ≤ 9.000 → 3x + 2y ≤ 450
    (3) x ≥ 0
    (4) y ≥ 0

    Kemudian kita tentukan fungsi tujuan dari soal tersebut. Karena yang ditanya adalah pendapatan maksimu, maka yang menjadi fungsi tujuan adalah harga jual masing-masing kue. Dengan demikian fungsi tujuannya adalah :
    ⇒ F(x,y) = 4.000x + 3.000y

    Langkah selanjutnya kita gambar grafik sesuai dengan sistem pertidaksamaan. Langkah pertama untuk menggambra grafiknya, tentukan dulu titik potong untuk masing-masing garis dengan cara misalkan x = 0 dan y = 0.

    Untuk lebih jelasnya perhatikan tabel berikut :
    Persamaan garisxyKoordinat
    x + y = 2000200(0, 200)
    2000(200, 0)
    3x + 2y = 4500225(0, 225)
    1500(150, 0)

    Gambarkan grafiknya dengan cara menarik garis menghubungkan titik-titik tersebut. Kemudian, tentukan himpunan penyelesaian untuk pertidaksamaannya.

    Pembahasan Soal Ujian Nasional Program Linear

    Untuk pertidaksamaan kurang dari sama dengan (≤) himpunan penyelsaiannya berada di sebelah kiri atau di bawah garis. Sehingga himpunan penyelesaian untuk sistem pertidaksamaan pada soal adalah daerah yang diarsir pada gambar di atas.

    Dari gambar di atas ada tiga titik pojok yang perlu kita uji untuk mengetahui nilai maksimum fungsi tujuan yaitu titik A, B, dan C. Titik A dan C dapat diketahui dari gambar yaitu A(0, 200) dan C(150, 0).

    Titik B harus kita cari terlebih dahulu. Titik B merupakan titik potong antara dua garis yaitu garis x + y = 200 dan 3x + 2y = 450.

    Cara menentukan titik potong metode substitusi :
    ⇒ x + y = 200
    ⇒ x = 200 - y ....(1)

    Substitusi persamaan di atas ke persamaa berikut :
    ⇒ 3x + 2y = 450
    ⇒ 3(200 - y) + 2y = 450
    ⇒ 600 - 3y + 2y = 450
    ⇒ -y = -150
    ⇒ y = 150

    Kembali ke persamaan (1) :
    ⇒ x = 200 - y
    ⇒ x = 200 -150
    ⇒ x = 50
    Dengan demikian, titik B(50, 150)

    Langkah terakhir, kita uji masing-masing titik pojok ke fungsi tujuan :
    Titik PojokF(x,y) = 4.000x + 3.000y
    A(0, 200)4000(0) + 3000(200) = 600.000
    B(50, 150)4000(50) + 3000(150) = 650.000
    C(150, 0)4000(150) +  3000(0) = 600.000

    Sesuai dengan tabel di atas, maka nilai maksimum fungsi tujuannya adalah 650.000. Dengan demikian, pendapatan maksimum yang dapat diperoleh penjual tersebut adalah Rp 650.000,00
    Jawaban : B

    Jika kamu masih bingung bagaimana cara menentukan himpunan penyelesaian sistem pertidaksamaannya, kamu bisa membaca pembahasan tentang cara menentukan himpunan penyelesaian pertidaksamaan di bawah ini.

    Read more : Cara Menentukan Himpunan Penyelesaian Pertidaksamaan Linear.

  1. Daerah yang diarsir pada gambar merupakan himpunan penyelsaian suatu sistem pertidaksamaan linear.

    Nilai maksimim untuk fungsi f(x,y) = 7x + 6y adalah ...
    Nilai maksimim untuk fungsi f(x,y) = 7x + 6y adalah ...
    1. 88
    2. 94
    3. 102
    4. 106
    5. 196

    Pembahasan :
    Dari gambar di atas terdapat tiga titik pojok yang dapat kita uji untuk melihat nilai maksimum fungsi tujuannya. Kita misalkan titik tersebut sebagai titik A, B, dan C seperti pada gambar di bawah.

    Nilai maksimim untuk fungsi f(x,y) = 7x + 6y adalah ...

    Dari gambar bisa langsung ditentukan koordinat titik A dan C, yaitu A(0, 15) dan C(12, 0). Titik B merupakan perpotongan antara dua garis.

    Untuk mengetahui titik potongnya, kita harus mengetahui persamaan garisnya terlebih dahulu. Garis pertama dan kedua ditunjukkan seperti pada gambar di atas.

    Garis pertama :
    ⇒ 20x + 12y = 240
    ⇒ 5x + 3y = 60
    ⇒ 5x = 60 - 3y  ....(1)

    Garis kedua
    ⇒ 15x + 18y = 270
    ⇒ 5x + 6y = 90 ...(2)

    Substitusi persamaan (1) ke persamaan (2)
    ⇒ 5x + 6y = 90
    ⇒ 60 - 3y + 6y = 90
    ⇒ 60 + 3y = 90
    ⇒ 3y = 30
    ⇒ y = 10

    Selanjutnya :
    ⇒ 5x = 60 - 3y
    ⇒ 5x = 60 - 3(10)
    ⇒ 5x = 60 - 30
    ⇒ 5x = 30
    ⇒ x = 6
    Dengan demikian titik B(6, 10)

    Langkah terakhir uji titik pojok ke fungsi tujuan untuk mengetahui titik mana yang menghasilkan nilai maksimum :

    Titik PojokF(x,y) = 7x + 6y
    A(0, 15)7(0) + 6(15) = 90
    B(6, 10)7(6) + 6(10) = 102
    C(12, 0)7(12) + 6(0) = 84

    Sesuai dengan tabel di atas, maka nilai maksimumnya adalah 102.
    Jawaban : C

    Selain menggunakan metode pengujian untuk masing-masing titik pojok seperti di atas, kamu juga bisa menggunakan metode garis selidik untuk menentukan nilai maksimum fungsi tujuan. Caranya relatif lebih simple dan untuk melihat bagaimana caranya, kamu bisa baca pembahasannya di bawah ini.

    Read more : Menentukan Nilai Maksimum Fungsi Tujuan Dengan Garis Selidik.

  1. Daerah yang diarsir pada gambar di samping merupakan himpunan penyelesaian dari suatu program linear.

    Pembahasan Soal Ujian Nasional Program Linear

    Nilai maksimum dari 3x + 4y adalah ...
    1. 20
    2. 24
    3. 28
    4. 30
    5. 32

    Pembahasan :
    Dari gambar di atas terdapat tiga titik pojok yang dapat kita uji untuk melihat nilai maksimum fungsi tujuannya. Kita misalkan titik tersebut sebagai titik A, B, dan C seperti pada gambar di bawah.

    Pembahasan Soal Ujian Nasional Program Linear

    Dari gambar bisa langsung ditentukan koordinat titik A dan C, yaitu A(0, 5) dan C(5½, 0). Titik B merupakan perpotongan antara dua garis.

    Untuk mengetahui titik potongnya, kita harus mengetahui persamaan garisnya terlebih dahulu. Garis pertama dan kedua ditunjukkan seperti pada gambar di atas.

    Garis pertama :
    ⇒ 11x + 5½y = 60,5
    ⇒ 2x + y = 11
    ⇒ y = 11 - 2x  ....(1)

    Garis kedua
    ⇒ 5x + 10y = 50
    ⇒ x + 2y = 10 ...(2)

    Substitusi persamaan (1) ke persamaan (2)
    ⇒ x + 2y = 10
    ⇒ x + 2(11 - 2x) = 10
    ⇒ x + 22 - 4x = 10
    ⇒ -3x = -12
    ⇒ x = 4

    Selanjutnya :
    ⇒ y = 11 - 2x
    ⇒ y = 11 - 2(4)
    ⇒ y = 11 -8
    ⇒ y = 3
    Dengan demikian titik B(4, 3)

    Langkah terakhir uji titik pojok ke fungsi tujuan untuk mengetahui titik mana yang menghasilkan nilai maksimum :

    Titik PojokF(x,y) = 3x + 4y
    A(0, 5)3(0) + 4(5) = 20
    B(4, 3)3(4) + 4(3) = 24
    C(5½, 0)3(5½) + 4(0) = 16½

    Sesuai dengan tabel di atas, maka nilai maksimumnya adalah 24.
    Jawaban : B

    Jika kamu masih bingung bagaimana cara menentukan persamaan garis berdasarkan grafik, kamu bisa membaca pembahasannya melalui link di bawah ini.

    Read more : Menyusun Sistem Pertidaksamaan Linear Jika Grafik Diketahui.

  1. Perhatikan gambar di bawah ini!

    Pembahasan Soal Ujian Nasional Program Linear

    Sesuai dengan gambar, nilai maksimum f(x, y) = 4x + 5y di daerah yang diasrsir adalah ....
    1. 5
    2. 8
    3. 10
    4. 11
    5. 14

    Pembahasan :
    Sama seperti soal nomor 2 dan 3, kita dapat menentukan nilai maksimum fungsi tujuan dengan cara menguji titik pojok yang ada pada daerah penyelesaian.

    Dari gambar di atas terdapat tiga titik pojok yang dapat kita uji untuk melihat nilai maksimum fungsi tujuannya. Kita misalkan titik tersebut sebagai titik A, B, dan C seperti pada gambar di bawah.

    Pembahasan Soal Ujian Nasional Program Linear

    Dari gambar bisa langsung ditentukan koordinat titik A dan C, yaitu A(0, 2) dan C(2, 0). Titik B merupakan perpotongan antara dua garis.

    Untuk mengetahui titik potongnya, kita harus mengetahui persamaan garisnya terlebih dahulu. Garis pertama dan kedua ditunjukkan seperti pada gambar di atas.

    Garis pertama :
    ⇒ 4x + 2y = 8
    ⇒ 2x + y = 4
    ⇒ y = 4 - 2x  ....(1)

    Garis kedua
    ⇒ 2x + 3y = 6 ...(2)

    Substitusi persamaan (1) ke persamaan (2)
    ⇒ 2x + 3y = 6
    ⇒ 2x + 3(4 - 2x) = 6
    ⇒ 2x + 12 - 6x = 6
    ⇒ -4x = -6
    ⇒ x = 3/2

    Selanjutnya :
    ⇒ y = 4 - 2x
    ⇒ y = 4 - 2(3/2)
    ⇒ y = 4 - 3
    ⇒ y = 1
    Dengan demikian titik B(3/2, 1)

    Langkah terakhir uji titik pojok ke fungsi tujuan untuk mengetahui titik mana yang menghasilkan nilai maksimum :

    Titik PojokF(x,y) = 4x + 5y
    A(0, 2)4(0) + 5(2) = 10
    B(3/2, 1)4(3/2) + 5(1) = 11
    C(2, 0)4(2) + 5(0) = 8

    Sesuai dengan tabel di atas, maka nilai maksimumnya adalah 11.
    Jawaban : D


Mantep kan mas brow artikel :Pembahasan Soal Ujian Nasional Program Linear

,.. Pembahasan Soal Ujian Nasional Program Linear kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah kalau Blegitchu, sampai jumpa di postingan artikel lainnya Jangan lupa Share yaaa. Kawulo Alit manunggaling Gusti.. Donasi web ini silahkan hubungi aksarakuning@gmail.com, seikhlasnya, yang penting membantu membangun dan mencerdaskan kehidupan bangsa.

Anda sekarang membaca artikel Pembahasan Soal Ujian Nasional Program Linear dengan alamat link https://pendidikan-tld.blogspot.com/2016/04/pembahasan-soal-ujian-nasional-program.html

Sign up here with your email address to receive updates from this blog in your inbox.

0 Response to "Pembahasan Soal Ujian Nasional Program Linear"

Posting Komentar