Flashdisk Video Edukasi Islami Berisi 500 Lebih Video Edukasi.. Flashdisk 16GB Sandisk ORIGINAL garansi 5 Tahun. Gratis 1 OTG Dengan potongan 12%! Hanya Rp74.800. Dapatkan sekarang juga di Shopee! klik link ini langsung ke Shopee  VIDEO EDUKASI ISLAMI atau klik wa 081296355567 untuk WA ke Admin langsung Paket Flashdisk Video Edukasi Anak Muslim 16GB + Bonus OTG



Flashdisk Video Edukasi Islami Berisi 500 Lebih Video Edukasi.. Flashdisk 16GB Sandisk ORIGINAL garansi 5 Tahun. Gratis 1 OTG Dengan potongan 12%! Hanya Rp74.800. Dapatkan sekarang juga di Shopee! klik link ini langsung ke Shopee  VIDEO EDUKASI ISLAMI atau klik wa 081296355567 untuk WA ke Admin langsung Paket Flashdisk Video Edukasi Anak Muslim 16GB + Bonus OTG



Materi Soal Persamaan Trigonometri Beserta Pembahasan

Materi Soal Persamaan Trigonometri Beserta Pembahasan - Sahabat Dunia pendidikan Indonesia, Pada Artikel pendidikan yang anda baca kali ini dengan judul Materi Soal Persamaan Trigonometri Beserta Pembahasan, team telah mencoba mempersiapkan artikel ini dengan baik untuk anda baca dan ambil informasinya. mudah-mudahan isi artikel saya ini, Artikel 2016, Artikel Kurikulum 2013, Artikel Matematika, Artikel SMA, yang sudah dipersiapkan dan kami tulis ini dapat bermanfaat. Selamat membaca, jangan lupa SHARE dan Bookmark agar mudah mencari artikel ini.

Judul : Materi Soal Persamaan Trigonometri Beserta Pembahasan
link : Materi Soal Persamaan Trigonometri Beserta Pembahasan

Baca Juga

Materi dan Soal Persamaan Trigonometri

Contoh soal dan pembahasan menyelesaikan persamaan trigonometri, menentukan himpunan penyelesaian materi matematika kelas 10, 11 SMA.

Tengok dulu 3 kelompok rumus penyelesaian persamaan trigonometri berikut.
Masing-masing untuk sinus, cosinus dan untuk tangen:
Rumus Penyelesaian Persamaan Trigonometri

Untuk sinus



Untuk kosinus


Untuk tangen


k diisi nilai 0, 1, 2, 3 dan seterusnya.

Contoh:

Soal No. 1
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari sin x = 1/2 

Pembahasan
Dari:
sin x = 1/2

Untuk harga awal, sudut yang nilai sin nya 1/2 adalah 30°.

Sehingga
sin x = 1/2
sin x = sin 30°

Dengan pola rumus yang pertama di atas: 


(i) x = 30 + k ⋅ 360
k = 0 → x = 30 + 0 = 30 °
k = 1 → x = 30 + 360 = 390 °


(ii) x = (180 − 30) + k⋅360
x = 120 + k⋅360 

x = 150 + k⋅360
k = 0 → x = 150 + 0 = 150 °
k = 1 → x = 150 + 360 = 510 °

Dari penggabungan hasil (i) dan hasil (ii), dengan batas permintaan 0° ≤ x ≤ 360°, yang diambil sebagai himpunan penyelesaiannya adalah:
HP = {30°, 150°} 

Soal No. 2
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 

Pembahasan
1/2 adalah nilai cosinus dari 60°. 

Sehingga 

cos x = cos 60° 


(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°

(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60° 
k = 1 → x = −60 + 360° = 300° 

Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}

Soal No. 3
Untuk 0° ≤ x ≤ 720° tentukan himpunan penyelesaian dari sin (x − 30) = 1/2 √3 

Pembahasan
1/2 √3 miliknya sin 60°

Sehingga 

sin (x − 30) = sin 60°


dan 

Untuk 0° ≤ x ≤ 720°, HP = {90°, 150°, 450°, 510°}

Soal No. 4
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari 
cos (x − 30°) = 1/2 √2 

Pembahasan
Harga awal untuk 1/2 √2 adalah 45°


HP = {75°, 345°}

Soal No. 5
Himpunan penyelesaian persamaan:

cos 2x + sin x = 0 

untuk 0 < x ≤ 2π adalah.....
A. {π/2, 4π/3, 5π/3}
B. {π/2, 7π/6, 4π/3}
C. {π/2, 7π/6, 5π/3}
D. {π/2, 7π/6, 11π/6}
E. {π/2, 5π/3, 11π/6}

Pembahasan
Dari rumus sudut rangkap dari pelajaran sebelumnya:
cos 2x = cos2 x − sin2x
cos 2x = 2 cos2 x − 1
cos 2x = 1 − 2 sin2 x



cos 2x + sin x = 0
1 − 2 sin2 x + sin x = 0
− 2 sin2 x + sin x + 1 = 0
2 sin2 x − sin x − 1 = 0

Faktorkan:
(2sin x + 1)(sin x − 1) = 0
2sin x + 1 = 0
2sin x = −1
sin x = −1/2
x = 210° dan x = 330° 
atau
sin x − 1 = 0
sin x = 1
x = 90°

Sehingga:
HP = {90°, 210°, 330°} dalam satuan derajat.
HP = {π/2, 7π/6, 11π/6} dalam satuan radian.

Jawaban : D. 

Soal No. 6
Himpunan penyelesaian persamaan cos 2x + 5 sin x + 2 = 0 untuk 0 ≤ x ≤ 2π adalah…
A. {2π/3,4π/3}
B. {4π/3, 5π/3}
C. {5π/6, 7π/6}
D. {5π/6, 11π/6}
E. {7π/6, 11π/6}

Pembahasan
Persamaan trigonometri:
Misalkan sin x sebagai P dan juga cos 2x = 1 − 2sin2 x

Soal No. 7
Himpunan penyelesaian persamaan 2cos 2x − 3 cos x + 1 = 0 untuk 0 < x < 2π adalah…
A. {π/6, 5π/6}
B. {π/6, 11π/6}
C. {π/3, 2π/3}
D. {π/3, 5π/3}
E. {2π/3, 4π/3}

Pembahasan
2cos 2x − 3 cos x + 1 = 0

Faktorkan:
(2cos x − 1)(cos x − 1) = 0
(2cos x − 1) = 0
2cos x = 1
cos x = 1/2
x = 60° = π/3 dan x = 300° = 5π/3

atau
(cos x − 1) = 0 cos x = 1
x = 0° dan x = 360° = 2π (Tidak diambil, karena diminta 0 < x < 2π) 

Jadi HP = {π/3, 5π/3}
Jawaban: D

Soal No. 8
Himpunan penyelesaian dari persamaan cos 4x + 3 sin 2x = −1 untuk 0° ≤ x ≤ 180° adalah…
A. {150°,165°}
B. {120°,150°}
C. {105°,165°}
D. {30°,165°}
E. (15°,105°)

Pembahasan
Ubah ke bentuk sin semua, dengan rumus sudut rangkap, kemudian faktorkan:

cos 4x + 3 sin 2x = −1

Untuk faktor 

Tidak Memenuhi, lanjut ke faktor 

Diperoleh 
Jadi HP = {105°,165°}

Soal No. 9
Himpunan penyelesaian dari 2 sin2 x − 3 sin x + 1 = 0 dengan 0° ≤ x ≤ 360° adalah....
A. {30°, 90°, 150°} 
B. {30°, 120°, 240°}
C. {30°, 120°, 300°}
D. {30°, 150°, 270°}
E. {60°, 120°, 270°}
(UN Matematika SMA IPA 2014)

Pembahasan
Soal ini akan coba diselesaikan dengan cara coba-coba. Ambil salah satu sudut dari pilihan jawaban yang ada, untuk mengeliminir pilihan lainnya. Dari yang mudah yaitu 30° atau 90°. Nilai sin 30° adalah 1/2, jika sudut ini termasuk jawaban maka akan sama dengan nol seperti permintaan soal.

Persamaan di soal:
2 sin2 x − 3 sin x + 1 = ?
30° → 2 sin2 (30°) − 3 sin (30°) + 1 = ?
= 2 (1/2)2 − 3 (1/2) + 1
= 0 (Benar, jadi jawaban harus memuat angka 30°, pilihan E salah karena tidak memuat 30 derajad.)

Berikutnya coba 90°, tentunya sudah tahu sin 90° = 1
2 sin2 x − 3 sin x + 1 = ?
90° → 2 sin2 90° − 3 sin 90° + 1 = ?
= 2 (1)2 − 3 (1) + 1 
= 2 − 3 + 1 
= 0 (Benar, Jawaban harus memuat 90° jadi B, C, D, dan E salah, A dipastikan benar tanpa dilakukan pengecekan pada 150°, tentunya kalau soalnya ndak error)



Soal No. 10
Himpunan penyelesaian persamaan cos 2x − 2 sin x = 1; 0 ≤ x < 2π adalah....
A. {0, π, 3π/2, 2π}
B. {0, π, 4π/3, 2π}
C. {0, 2π/3; π, 2π}
D. {0, π, 2π}
E. {0, π, 3π/2}

Pembahasan
Soal ini lebih mudah lagi, syaratnya adalah 0 ≤ x < 2π , maka x tidak boleh memuat 2π, karena tandanya adalah lebih kecil dari 2π bukan lebih kecil atau sama dengan. Jadi pilihan yang ada 2π nya salah, hanya E yang tidak memuat 2π. Jadi jawabnya yang E, soal di atas dari soal UN, namun soal seperti ini jarang-jarang ada.


Mantep kan mas brow artikel :Materi Soal Persamaan Trigonometri Beserta Pembahasan

,.. Materi Soal Persamaan Trigonometri Beserta Pembahasan kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah kalau Blegitchu, sampai jumpa di postingan artikel lainnya Jangan lupa Share yaaa. Kawulo Alit manunggaling Gusti.. Donasi web ini silahkan hubungi aksarakuning@gmail.com, seikhlasnya, yang penting membantu membangun dan mencerdaskan kehidupan bangsa.

Anda sekarang membaca artikel Materi Soal Persamaan Trigonometri Beserta Pembahasan dengan alamat link https://pendidikan-tld.blogspot.com/2016/04/materi-soal-persamaan-trigonometri.html

Sign up here with your email address to receive updates from this blog in your inbox.

1 Response to "Materi Soal Persamaan Trigonometri Beserta Pembahasan"