Judul : Materi Soal Persamaan Trigonometri Beserta Pembahasan
link : Materi Soal Persamaan Trigonometri Beserta Pembahasan
Baca Juga
Materi dan Soal Persamaan Trigonometri
Contoh soal dan pembahasan menyelesaikan persamaan trigonometri, menentukan himpunan penyelesaian materi matematika kelas 10, 11 SMA.
Tengok dulu 3 kelompok rumus penyelesaian persamaan trigonometri berikut.
Masing-masing untuk sinus, cosinus dan untuk tangen:
Rumus Penyelesaian Persamaan Trigonometri
Untuk sinus
Untuk kosinus
Untuk tangen
k diisi nilai 0, 1, 2, 3 dan seterusnya.
Contoh:
Soal No. 1
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari sin x = 1/2
Pembahasan
Dari:
sin x = 1/2
Untuk harga awal, sudut yang nilai sin nya 1/2 adalah 30°.
Sehingga
sin x = 1/2
sin x = sin 30°
Dengan pola rumus yang pertama di atas:
(i) x = 30 + k ⋅ 360
k = 0 → x = 30 + 0 = 30 °
k = 1 → x = 30 + 360 = 390 °
(ii) x = (180 − 30) + k⋅360
x = 120 + k⋅360
x = 150 + k⋅360
k = 0 → x = 150 + 0 = 150 °
k = 1 → x = 150 + 360 = 510 °
Dari penggabungan hasil (i) dan hasil (ii), dengan batas permintaan 0° ≤ x ≤ 360°, yang diambil sebagai himpunan penyelesaiannya adalah:
HP = {30°, 150°}
Soal No. 2
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2
Pembahasan
1/2 adalah nilai cosinus dari 60°.
Sehingga
cos x = cos 60°
(i) x = 60° + k ⋅ 360°
k = 0 → x = 60 + 0 = 60 °
k = 1 → x = 60 + 360 = 420°
(ii) x = −60° + k⋅360
x = −60 + k⋅360
k = 0 → x = −60 + 0 = −60°
k = 1 → x = −60 + 360° = 300°
Himpunan penyelesaian yang diambil adalah:
HP = {60°, 300°}
Soal No. 3
Untuk 0° ≤ x ≤ 720° tentukan himpunan penyelesaian dari sin (x − 30) = 1/2 √3
Pembahasan
1/2 √3 miliknya sin 60°
Sehingga
sin (x − 30) = sin 60°
dan
Untuk 0° ≤ x ≤ 720°, HP = {90°, 150°, 450°, 510°}
Soal No. 4
Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari
cos (x − 30°) = 1/2 √2
Pembahasan
Harga awal untuk 1/2 √2 adalah 45°
HP = {75°, 345°}
Soal No. 5
Himpunan penyelesaian persamaan:
cos 2x + sin x = 0
untuk 0 < x ≤ 2π adalah.....
A. {π/2, 4π/3, 5π/3}
B. {π/2, 7π/6, 4π/3}
C. {π/2, 7π/6, 5π/3}
D. {π/2, 7π/6, 11π/6}
E. {π/2, 5π/3, 11π/6}
Pembahasan
Dari rumus sudut rangkap dari pelajaran sebelumnya:
cos 2x = cos2 x − sin2x
cos 2x = 2 cos2 x − 1
cos 2x = 1 − 2 sin2 x
cos 2x + sin x = 0
1 − 2 sin2 x + sin x = 0
− 2 sin2 x + sin x + 1 = 0
2 sin2 x − sin x − 1 = 0
Faktorkan:
(2sin x + 1)(sin x − 1) = 0
2sin x + 1 = 0
2sin x = −1
sin x = −1/2
x = 210° dan x = 330°
atau
sin x − 1 = 0
sin x = 1
x = 90°
Sehingga:
HP = {90°, 210°, 330°} dalam satuan derajat.
HP = {π/2, 7π/6, 11π/6} dalam satuan radian.
Jawaban : D.
Soal No. 6
Himpunan penyelesaian persamaan cos 2x + 5 sin x + 2 = 0 untuk 0 ≤ x ≤ 2π adalah…
A. {2π/3,4π/3}
B. {4π/3, 5π/3}
C. {5π/6, 7π/6}
D. {5π/6, 11π/6}
E. {7π/6, 11π/6}
Pembahasan
Persamaan trigonometri:
Misalkan sin x sebagai P dan juga cos 2x = 1 − 2sin2 x
Soal No. 7
Himpunan penyelesaian persamaan 2cos 2x − 3 cos x + 1 = 0 untuk 0 < x < 2π adalah…
A. {π/6, 5π/6}
B. {π/6, 11π/6}
C. {π/3, 2π/3}
D. {π/3, 5π/3}
E. {2π/3, 4π/3}
Pembahasan
2cos 2x − 3 cos x + 1 = 0
Faktorkan:
(2cos x − 1)(cos x − 1) = 0
(2cos x − 1) = 0
2cos x = 1
cos x = 1/2
x = 60° = π/3 dan x = 300° = 5π/3
atau
(cos x − 1) = 0 cos x = 1
x = 0° dan x = 360° = 2π (Tidak diambil, karena diminta 0 < x < 2π)
Jadi HP = {π/3, 5π/3}
Jawaban: D
Soal No. 8
Himpunan penyelesaian dari persamaan cos 4x + 3 sin 2x = −1 untuk 0° ≤ x ≤ 180° adalah…
A. {150°,165°}
B. {120°,150°}
C. {105°,165°}
D. {30°,165°}
E. (15°,105°)
Pembahasan
Ubah ke bentuk sin semua, dengan rumus sudut rangkap, kemudian faktorkan:
cos 4x + 3 sin 2x = −1
Untuk faktor
Tidak Memenuhi, lanjut ke faktor
Diperoleh
Jadi HP = {105°,165°}
Soal No. 9
Himpunan penyelesaian dari 2 sin2 x − 3 sin x + 1 = 0 dengan 0° ≤ x ≤ 360° adalah....
A. {30°, 90°, 150°}
B. {30°, 120°, 240°}
C. {30°, 120°, 300°}
D. {30°, 150°, 270°}
E. {60°, 120°, 270°}
(UN Matematika SMA IPA 2014)
Pembahasan
Soal ini akan coba diselesaikan dengan cara coba-coba. Ambil salah satu sudut dari pilihan jawaban yang ada, untuk mengeliminir pilihan lainnya. Dari yang mudah yaitu 30° atau 90°. Nilai sin 30° adalah 1/2, jika sudut ini termasuk jawaban maka akan sama dengan nol seperti permintaan soal.
Persamaan di soal:
2 sin2 x − 3 sin x + 1 = ?
30° → 2 sin2 (30°) − 3 sin (30°) + 1 = ?
= 2 (1/2)2 − 3 (1/2) + 1
= 0 (Benar, jadi jawaban harus memuat angka 30°, pilihan E salah karena tidak memuat 30 derajad.)
Berikutnya coba 90°, tentunya sudah tahu sin 90° = 1
2 sin2 x − 3 sin x + 1 = ?
90° → 2 sin2 90° − 3 sin 90° + 1 = ?
= 2 (1)2 − 3 (1) + 1
= 2 − 3 + 1
= 0 (Benar, Jawaban harus memuat 90° jadi B, C, D, dan E salah, A dipastikan benar tanpa dilakukan pengecekan pada 150°, tentunya kalau soalnya ndak error)
Soal No. 10
Himpunan penyelesaian persamaan cos 2x − 2 sin x = 1; 0 ≤ x < 2π adalah....
A. {0, π, 3π/2, 2π}
B. {0, π, 4π/3, 2π}
C. {0, 2π/3; π, 2π}
D. {0, π, 2π}
E. {0, π, 3π/2}
Pembahasan
Soal ini lebih mudah lagi, syaratnya adalah 0 ≤ x < 2π , maka x tidak boleh memuat 2π, karena tandanya adalah lebih kecil dari 2π bukan lebih kecil atau sama dengan. Jadi pilihan yang ada 2π nya salah, hanya E yang tidak memuat 2π. Jadi jawabnya yang E, soal di atas dari soal UN, namun soal seperti ini jarang-jarang ada.
Mantep kan mas brow artikel :Materi Soal Persamaan Trigonometri Beserta Pembahasan
,.. Materi Soal Persamaan Trigonometri Beserta Pembahasan kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah kalau Blegitchu, sampai jumpa di postingan artikel lainnya Jangan lupa Share yaaa. Kawulo Alit manunggaling Gusti..
Donasi web ini silahkan hubungi aksarakuning@gmail.com, seikhlasnya, yang penting membantu membangun dan mencerdaskan kehidupan bangsa.
Anda sekarang membaca artikel Materi Soal Persamaan Trigonometri Beserta Pembahasan dengan alamat link https://pendidikan-tld.blogspot.com/2016/04/materi-soal-persamaan-trigonometri.html
kalau ini sin(3x-60°)= 1/2
BalasHapus